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This paper is intended as an investigation of constructing almost unbiased 
estimators of finite population mean by suitably combining a set of transformed 
estimators. A generalization of Tracy, Singh and Singh (1999) estimator is suggested, 
and, to the first degree of approximation, each member of the proposed class is as 
efficient as the usual regression estimator. Further, it is proved that Reddy (1973) 
estimator is also a particular case of the proposed class. To the second degree of 
approximation, a new almost unbiased estimator is established. Moreover, an 
empirical study is carried out in order to understand better the performance of the new 
estimator compared to the usual unbiased y ,  ratio YR and Tracy et al. (1999) 

estimators. 

Key words: bias; mean squared error; simple random sampling without replacement 
(SRSWOR); transformed auxiliary variable. 

1. I N T R O D U C T I O N  

Consider a fmite population U = (U,, U 2 ..... U s ) of size N from which a sample 

of size n is drawn through simple random sampling without replacement 
(SRSWOR). Let x, and y, be the values of the auxiliary variable x and the study 

variable y for the unit U, respectively. Denote by X and Y the population 
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means of x and y .  The problem of interest is to estimate the population mean Y- 

on the basis of  units in a sample from U with the knowledge that X is known. Let 
and ~ be the unbiased estimators of  the population means .~ and Y 

respectively, and ~ = X/~  which is a pivotal quantity. 
Generally, positively or negatively correlated between the study variable and the 

auxiliary variable would lead to different types of estimators. For estimating the 
population mean Y, the following estimators are commonly used. 

When the correlation between x and y is positive, Cochran 0940) suggests the 

ratio estimator 
y. = ~  (1.1) 

and Bandyopadhyay (1980) and 8rivankataramana (1980) suggest the ratio-type 
est imator ,  wi th  g -- , , / ( N - , , ) ,  

y-~ = ~[~ + g(~ -1)]/~. (1.2) 

And, when x is negatively correlated with y ,  Robson (1957) and Murthy (1964) 
suggest the product estimator 

y ,  = y /~  (1.3) 

and Bandyopadhyay (1980) and Srivankataramana (1980) suggest 

3 ;  = + 1)]. (1.4) 
In addition to these, several researchers have attempted to formulate modified ratio 
estimators in order to provide better alternatives, such as Srivastava (1967), Reddy 
(1973), Gupta (1978), Sahai (1979), Adhvaryu and Gupta (1983) etc. Kothwala and 
Gupta (1988) investigated the behavior of these mentioned estimators, when second 
degree approximation is considered, and, it is concluded that one should go for the 
Reddy (1973) estimator. 

Moreover, up to terms of  order O(n-'), Traey, Singh and Singh (1999) adopt a 

procedure, suggested by Singh and Singh (1993), to construct an almost unbiased 
estimator, with K = p C,,/C, , given by 

]~6(0,)_yfl - K[2K-(y -1 )g]_  K [ a + I - 2 K ]  K[2K-(u  ~, 
- [ 

K[et + 1-  2K] ,, " 1)}/~] r } (1.5) 
+ yg[oL + l _ 6 _ l ) g ]  [l~ + g t~-  

It is well known that the usual ratio (product) estimator of the population mean 
using auxiliary variable x is optimum if the regression of  y on x is linear and 

goes through the origin. Often, however, the regression of y on x is linear but does 

not go through the neighborhood of the origin. In that ease the usual ratio (product) 
estimator of Y is inappropriate. In such a case, it is more appropriate to use the 
transformed auxiliary variable to estimate the population mean Y, see Mohanty and 
Das (1971). In this paper, a number of almost unbiased estimators based on a 
transformed auxiliary variable are proposed. In section 2, a generalization of Tracy et 
al. (1999) estimator is suggested with its properties. And section 3 provides evidence 
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that the ratio-cum-product estimator ~ [ ~ - K ( ~ - I ) ] - '  suggested by Reddy (1973) 

belongs to the proposed class. Up to the second degree o f  approximation, a new 
almost unbiased estimator is developed in section 4, assuming that N is large and 
the population follows a bivariate normal distribution. In addition, an empirical study 
is reported in section 5 with the help of  live data. 

2. THE P R O P O S E D  CLASS OF ESTIMATORS 

In this section we consider a generalization of  Tracy et al. (1999) estimator and its 
specific cases will be provided in the next two sections. 

Suppose that the values of  x and y are positive for all units in the population. 

Def'me e0 = (~ /Y ' ) - I  and e, = ( Y / R ) - I .  Since the sample is drawn by the method 

of  SRSWOR, we have, with 0 =(N-n)/(nN), 
E(eo)= E(e,)=O, e(eoe,)=OKC:, 
E(e2o )=OC;, E(e: )= OC 2 

where 

c.:= O,,-g)~/(U-1)g ~, c:=E(x , -~)2/Ov-1)2 ~ 
i=1 t=l 

and p denotes the correlation coefficient between x and y .  

According to the transformed ratio method, the ratio .~/~ is transformed to be 

. ~ + L  = ( I + L ' ~  (2.1) 
~ + L  I + L ' ~  

where L' = L/.X, L is a nonnegative constant. Consider the transformed estimators 

Y, = Y, Y2 = y[(1 + L'~/(1 + L'~)]" and Y3 = fi[{(1 + L')~ + g(~-1)}/(1 + L ' ~ ] '  where 

(=, are cor mts which may take values 0, 0 or (-  1 , -  l) according as and 
y are positively or negatively correlated. By taking the three estimators mentioned 

above and considering their convex combination, we can define a new class o f  
estimators, which takes the form 

3 

i= l  

such that 
3 

~ 5 ,  = l (2.3) 
t=1 

where the weights 5, ,  5 2 and 5 3 are suitably chosen constants so that the bias in 

the estimator Y to the first degree of  approximation is zero. 

Expressing Y in terms of  eo and e,, it follows that 

Y = Y~ + e o - ( 1  + L')-'(ct62 + ygf,)e,}+O,(e~), 
and thus, 

(2.2) 

(2.4) 
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I ~ - Y = Y {Co -(1 + L')-' (cx62 + ~'g53 )el }+ Op (e 2 ). (2.5) 

Squaring (2.5), neglecting terms involving powers in eo and e, higher than the 

second, and taking expectation, we have, up to terms of  order O(n -~), 

(2.6) ~. l+L' j 
which is minimized when 

(1+ L')-' (r +yg53)= K .  (2.7) 
Consequently, we get the minimum mean square error as 

t.y~ - p ). (2.8) 

Further, in order to eliminate the bias of  Y,  we have a linear restriction 
3 -  

Z S , B ( f i , ) =  0 (2.9) 
i=1 

where B(~,) denotes the bias in the i th estimator. 

It is evident to see that the biases o f  ~ ,  Y2 and Y3, up to terms of  order O(n -~), 
are respectively given by 

B(fil) = O, (2.10) 

B(fi 2 )= O(Y'/2)C. ~ (1 + L')-2 c~[c~ + I- 2(1 + L')K], (2.11) 

B(~3) = 0(F/2)C~ (1 + L')-2 yg[(y - l )g -2(1  + L')K]. (2.12) 
In the light of  the expressions of (2.3), (2.7) and (2.9), we have 

[i ' [i] ~(1 + L')-' yg(1 + L')-' 5 2 = . (2.13) 

~[a+I-2(1+L')K] "~g[(~,-1)g-2(l+L')g]] 53 
Solving (2.13) for 5, (i = 1, 2, 3), it follows that 

51 =1 -K(1+L')[2(1+L')K-(Y-1)g]-KO+L')[~ (2.14) 
cx[o~ + 1 -  ( y -  1)g] yg[o~ + 1 -  ( y -  1)g] ' 

82 K(I+ L')[2(1+ L')K-(y-I)g] (2.15) 
= ct[~ + 1 -  ( y -  l)g] ' 

83 = K(I + L')[~ + I -  20 + L')K] 
+l-(v-l)g] (2.16) 

Substituting from the optimum weights (2.14), (2.15) and (2.16) in (2.2) and after 
some simplification, we obtain a general class of  almost optimum unbiased estimators 
(AOUEs) t I (say) as 

= f i l l -  K(1 + L')[2(1 + L')K - (y - 1)g] _ K(1 + L')[Ct + 1 -  2(1 + L')K] 
tl [ ~[~ + 1 - ( y - 1 ) g ]  yg[cz + 1 - ( y - 1 ) g ]  
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KO + v i 2 0  +.,r.,'),'r - ( , r -  l)g] ~ 
+ ot[ct + l - ( y - 1 ) g ]  L I+L~, j 

K(I; ; [J: ; ]  (r [{( 1 )~ (+)},(1 + +L '  + g  -1 + L '  

with the variance 

V(tl)=OY'2C;O-p 2) 
which is equivalent to that of  the usual linear regression estimator. 

(2.17) 

(2.18) 

Remark 1: Corresponding to the various suitable choices of  8, (i = 1, 2, 3) and L ,  

the expression (2.2) generates a class of estimators. For example, i f  8~ = 1 and 

82 = 63 = 0, then the estimator becomes y ,  the simple unbiased estimator of  Y.  In 

a similar way, it is obvious to see that YR, Ye, Y; and y ;  belong to this class. 

Remark 2: In case of  L = 0 in (2.17), the almost optimum unbiased estimator t 1 

reduces to Tracy et al. (1999) estimator I~6~ "1 . 

Remark 3: It is to be noted that the AOUE t I could be used in practice if  the 

parameter K is known. A prior knowledge of K sometimes can be obtained from a 
most recent survey taken in the past or by conducting a survey using double sampling 
technique. This problem has been investigated by many researchers such as Murthy 
(1967, p.96-99), Reddy (1978) and Srivenkataramana and Tracy (1984). Thus, it is 
not entirely unrealistic to assume a prior knowledge of K .  

When the exact value of  K or its guessed value is not known in advance, it is 

advisable to replace it with its sample analogue /~ and then we get the following 
estimator, given by 

t:= ~{1-/~(1 + L')[2(1 + L')/~- (y-1)g]_/~'(1 + L')[~:x + 1-2(1+ L')/~] 
c~[a + 1 -  (~,-1)g] ~,gb + 1 - ( y -  1)g] 

+ L,)p, + (1, T 
+ a p  + 1-  (y-1)g] L]TZ- J 

~2(I+L')[:z+I-2(I+L')K][{(I+L'~+g({-1)}I(I+L'~]'} (2.19) 
+ ,/g[,x + 1 -  ( ' t -  1)g] 

X s  ~y 
where /~ = ~ denotes an estimator of  K .  

ys.  

To find the mean square error of  the estimator, let us define 11 = ( / ~ / K ) - I ,  where 

E(rl)= O ( n  -~),  then, expressing t~" in terms of  e0, e, and 11, we have 

t; - Y = Y{e. - Ke, - Kr le ,  - Keoe, + K'e~ }. (2.20) 
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One can easily check that the mean square error of t~ to the first order of 

approximation is same as that given in (2.18). In addition, t~ is biased with 
magnitude of  bias given by 

B(t; )=  OY(C:lC02 -Jr-C03Cll-C12C02)/C:2 (2.21) 
where 

( 1 / N ) s  
C ls --~" iffii 

yt X,  
Further, the sampling bias of the simple regression estimator fit = f i + b ( R - ~ ) ,  

where b = E (Y' - yXx, - ~ , _ 2 )2 ,  can also be obtained as 
'=1 

B(fi, )= O Y (C~C. -C,2Co2 )/C ~ . (2.22) 

Comparing t~ with respect to fit, we observe that the former is more efficient than 
the latter if  the following condition is satisfied: 

C:,Co2 + 2(C03C,, - C,2C ~ ) < O. (2.23) 

3. S P E C I F I C  E S T I M A T O R  O F  T H E  C L A S S  

In this section, we assume that the weights 61 e R and 82, 33 e R § u {0 / where 

R denotes the set of real numbers and R § be the set of  positive real numbers. The 
mean square errors of  ~ ,  Y2 and Y3 to the first degree of  approximation are 

respectively given by 
MSEG, ) = Oy2c~, (3.1) 

{c; +s0+ L')-' 2K0 + L')]C: }, (3.2) 
MSE(.~,) = 0Z2 {C; + Tg0+ L')-2[yg-2KO+ L')]C: }. (3.3) 

Notice that MSE(y l) does not depend on the value of  L.  Now we are desired to 

iliad the optimum value of L such that 52MSE(.~2)+153MSE(~3) attains its 
minimum. It is easy to verify that the minimum value occurs if the following equation 
holds: 

2 + 2 z '~ (I+L,)-,( a 152 Y g 153 
. ~' ~--ff2"+--~g83 ') = K .  (3.4) 

Solving the expression (3.4) with respect to restrictions in (2.13), we obtain the 
opt imum values of  15, (i = 1, 2, 3) and L as follows: 

15, = (ct-1)(y+l~ct-Yg)2 (3.5) 
oty[(y + 1)g + (1- a)]'  ' 

(or + yXy + 1)g 2 
15, = ot[(y + 1)g + ( l - a ) ]  2 '  (3.6) 
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(cx + y)(1 - ct) 

53 ~[(y+l)g +(l-~)] ~' 

L=xF (~ +~)g _11 
L K[(T +1) ,  + 0 -  ~)] J 

And thus, we get the almost optimum unbiased estimators t 2 (say), given by 

t, = ~;:(cx- 1Xy + 1X{x-Tg)2 
: [ o~y[(T + 1)g + (1 - ot)]2 

(~ + YXY + 1)g 2 2 [ (Or + y)g~ -1)T'.j 

(,~ + yXl-,~) , V(,~ + ~)~ + K{(y + 1)~ + ( l - ,0}(~-  1)-I' t 
~[(Y + ~)g-~0-- ~)l L (~+Y)~ J J 

with the same variance as given in (2.18). 

(3.7) 

(3.8) 

(3.9) 

Remark  4: It is obvious to see that for the cases of cx = y = 1 and cx = y = -1 ,  the 
resulting almost optimum unbiased estimators are identical with Reddy (1973) 
estimator t 3 (say), given by 

t s = ~ [ ~ -  K ( ~ -  1)]-' (3.10) 
which is demonstrated as a particular case of  the suggested class. 

4. HIGHER ORDER APPROXIMATION 

In deriving the expected values and the mean square errors in the previous sections, 
it is assumed that the contribution of terms involving powers in e 0 and e~ higher 

than the second is negligible. We shall now retain the terms in e 0 and e I up to the 

fourth, and proceed to obtain a better approximation to the expected value and the 
mean square error of  the estimator t]. For simplicity, it is assumed that the 

population size N is very large as compared to sample size n ,  so that finite 
population correction terms can be ignored and g = 0. 

For the optimum values of  61 , 8 2 and 8 3 given in section 2, up to the second 
degree of approximation, it follows that 

t, - Y'= Y{e o -Ke , -Keoe  , +K2e~ +K~eoe~ -xe~ -Xeoe ~ + (oe~} (4.1) 

where 

(~+2) K 2 

and 

r = (ct +2Xot + 3 ) K  2 " 
12(1 + L') 2 

Squaring (4.1) and ignoring terms involving powers in e o and e~ higher than the 
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fourth, we have 
MSE(t, ) =  ~'E{eo' - 2Keoe, + K ' e ,  + 4 /< ' eoe ,  - 2Keo'e, - 2Z<'e} + 3/<'e0'e~ 

- 2(2~' + +oe: +/<(/<' + 2 + ;  }. (4.2) 
It is seen that the contribution of higher order terms depends on the values of  the 
moments and product=moments of ~ and ft .  Sukhatme and Sukhatme (1970) have 

obtained the expected values of  third and fourth order moments and product-moments 
of  two variables. In case ofbivariate normal population, it follows that 

Ci2 = C21 = C03 = C30 = O) C22 = C02C20 + 2C~,, 
Cl3 = 3CllC02 , C04 = 3C022, 

And then we have 

E(eoe:)=~(e0'e,)=e(e~)=0, e(e:e')=~(C,oCo, + 2C:,), 

Substituting these expected values in (4.2), after some simple algebra we get 

which does not depend on the value of  L.  
Moreover, the bias of  t,, up to the second degree of  approximation, is 

B(,.) = 3 c:(o - ,K). (4.4) 
n 

It may be noted that if L = 0,  i.e., Tracy et al. (1999) estimator 1~8"o is biased with 

m o u n t  of  bias given by 

B(~"oV~ ! ~= (oL + 2Xo~ + 3-4K)K2C(, (4.5) 
4n'  

Now we are attempted to f'md the optimum value of  L in order to provide an 
unbiased estimator. It is obvious to see that bias is zero if  o = xK, i.e., when the 
following equation holds: 

(x + 3 - 4(1 + L')K = 0.  (4.6) 

This leads to 

L =  ,X---((x+3-11.4K (4.7) 

Putting the optimum value of  L in (2.17), we obtain the almost unbiased estimator 
t, (say) as 

((x + 3)" (~ + 3)2 4K 
t, = I ' 8ot((x + I) | "  (4.8) 

It Can easily be proved that the proposed almost unbiased estimator t, is more 

efficient than the usual unbiased y ,  ratio YR, product yp estimators, as these are 

particular cases of  the suggested class in (2.2). Moreover, it is interesting to note that 
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t 4 and )3~(o) utilize the same amount of information and the proposed estimator t, is 

superior to Tracy et al. (1999) estimator ]78(0 ") in the sense o f  bias criterion. 

Furthermore, the mean square error of  the usual linear regression estimator 

~ ,  = ~+  B( . ~ -  ~), where B =  S~/S 2 , is given by 

MSE(~,, )=  1 ~-2C~ (1_ p2 ) (4.9) 
n 

which is equal to the first degree mean square error of  t 4 . 

The mean square error o f  t, can, therefore, be expressed as 

MSE(t,)= MSE(~,, )(I +3p2C: ). (4.10) 

Equation (4.10) shows that the contribution of  the third and fourth degree terms to the 

MSE of the estimator t, is 3p2C~/n times the value of  mean square error o f  usual 

linear regression estimator. Unless n is small, the contribution can, therefore, be 
considered to be negligible. 

5. E M P I R I C A L  S T U D Y  

In this section, we carry out an empirical study to see the performance of  the 
proposed estimator t 4 with respect to the unbiased estimator y ,  ratio estimator .vR 

and Tracy et al. (1999) estimator ]7~o) with cx = 1. For this purpose, we consider the 

data given in Cochran (1977, p.172) dealing with data 
y : the estimated production in bushels of  peach 

x : the number of  peach trees in an orchard. 
The required values are given as follows: 

S 2 = 6 4 0 9 ,  S ~ = 3 8 9 8 ,  S~y=4434,  N = 2 5 6  y 

P = 56.47, X = 44.45, p = 0.887 

and we take n = 2, 4, 8, 16, 32, 64.  

The first degree and second degree biases and mean square errors of  the unbiased 

estimator ~ ,  ratio estimator YR, Tracy et al. (1999) estimator I7~o ), and the 

proposed estimator t 4 are presented in Tables 1 and 2 respectively. The symbol T in 

the suffix indicates the first degree approximation, while 'II '  represents the second 
degree approximation. 

Table 1. The first desree biases and MSEs oft.he mentioned estimators 

2 0 5.8341 0 0 3204.5000 717.8039 683.2987 683.2987 
4 0 2.9171 0 0 1602.2500 358.9019 341.6494 341.6494 
8 0 1.4585 0 0 801.1250 179.4510 170.8247 170.8247 

16 0 0.7293 0 0 400.5625 89.7255 85.4123 85.4123 
32 0 0.3646 0 0 200.2813 44.8627 42.7062 42.7062 
64 0 0.1823 0 0 100 .1406  22.4314 21.3531 21.3531 
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Table 2. The second degree biases and MSEs of the mentioned estimators 

n B,,Cv) B,(~)B,,(I~8~ ")) B,(t,) MSE,(~)MSE,(~,,) MSE,,(~')) MSE,,(t,) 
2 0 23.0991 0.2450 0 3204.5000 3046.2261 2304.0032 
4 0 7.2333 0.0613 0 1602.2500 941.0075 746.8255 
8 0 2 .5376 0.0153 0 801.1250 324.9774 272.1187 

16 0 0 .9990 0.0038 0 400.5625 126.1071 110.7359 
32 0 0.4321 0.0010 0 200.2813 53.9581 49.0370 
64 0 0 .1992 0.0002 0 100.1406 24.7052 22.9358 

2304.0032 
746.8255 
272.1187 
110.7359 
49.0370 
22.9358 

It is observed from the above tables that the proposed estimator t, is almost 

unbiased whether we use first or second degree approximation and also, there is a 
considerable reduction in the mean square error of  this estimator from that of ratio 
estimator YR. And as expected, the constructed estimator t, performs better than the 

unbiased estimator ~ ,  ratio estimator YR and Tracy et al. (1999) estimator I7~ ). 

Thus in such situation one should go for the almost unbiased estimator t , .  
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